Publications

Check our peer-reviewed journal papers and conference papers.

Streamflow Estimation in Ungauged Regions using Machine Learning: Quantifying Uncertainties in Geographic Extrapolation

Hydrology and Earth System Sciences (Discussion)

May 1, 2023

In many protected areas and rivers with non-constant flow, there is limited ground data, making it hard to get streamflow information. This study looks at using streamflow data from regions with lots of information (North America, South America, and Western Europe) to help estimate streamflow in areas with less data (South Africa and Central Asia). By using machine learning algorithms trained on climate and catchment attributes from data-rich areas, we found they could effectively estimate monthly streamflow in data-poor regions. This study helps guide the selection of input data and machine learning methods for estimating streamflow in different geographic locations.

Impact of Vegetation Gradient and Land Cover Conditions on Soil Moisture Retrievals from Different Frequencies and Acquisition Times of AMSR2

IEEE Transactions on Geoscience and Remote Sensing

April 1, 2023

Estimating soil moisture from space using various microwave wavelengths is essential for predicting natural disasters and analyzing the Earth's water cycle. This study examines how well space-based technology can measure soil moisture (SM) and how it performs in different environments. It found that AMSR2 C-band products work better in areas with more vegetation, while X-band products are less effective. In areas with little vegetation, all AMSR2 products have weaker performance because of their limitations in detecting moisture in dry soil. The study also found that daytime measurements work better in areas with less vegetation, while nighttime measurements are more effective in densely vegetated areas. By using different products based on their strengths and weaknesses, researchers can improve the accuracy of soil moisture measurements, but this may result in reduced coverage of the area being studied.

Performance Assessment of SM2RAIN-NWF using ASCAT Soil Moisture via Supervised Land Cover-Soil-Climate Classification

Remote Sensing of Environment

February 1, 2023

Estimating precipitation from space using microwave satellite systems is essential for managing water resources, predicting natural disasters, and analyzing the Earth's water cycle. This study compares two algorithms, SM2RAIN and SM2RAIN-NWF, for estimating rainfall using soil moisture data. The newer SM2RAIN-NWF algorithm offers improved results by combining SM2RAIN with a net water flux model. We found that SM2RAIN-NWF performed better than SM2RAIN, especially in arid and semi-arid regions. The study also discovered that drainage played a crucial role in improving rainfall estimates, while evapotranspiration had a minimal impact.

A comprehensive Assessment of SM2RAIN-NWF using ASCAT and A Combination of ASCAT and SMAP Soil Moisture Products for Rainfall Estimation

Science of The Total Environment

September 1, 2022

Rainfall estimation using remote sensing technology offers a more accurate alternative to traditional measurement methods due to its high resolution in both time and space. The SMA2RAIN-NWF algorithm, an improved version of the original SM2RAIN algorithm, uses satellite soil moisture data to estimate rainfall. This study aims to evaluate the effectiveness of SMA2RAIN-NWF using multiple soil moisture products and different aggregation periods. The results show that the algorithm performs better as the aggregation levels increase and that it is more effective in urban areas. Overall, the SMA2RAIN-NWF algorithm demonstrates improved performance compared to the original SM2RAIN algorithm.

Combined Use of Crop Yield Statistics and Remotely Sensed Products for Enhanced Simulations of Evapotranspiration within an Agricultural Watershed

Agricultural Water Management

April 1, 2022

Predicting water cycling in agricultural watersheds is challenging due to factors like farming practices. This study looks at using remote sensing evapotranspiration (ET) data and crop yield information to improve the accuracy of the Soil and Water Assessment Tool (SWAT) model. By adding more constraints to the model, such as crop yield, the number of acceptable parameter sets was reduced, and the model's performance improved. The results suggest that using crop yield data as an additional constraint can help reduce uncertainty and increase the accuracy of ET predictions in agricultural watersheds.

First Attempt of Global-Scale Assimilation of Subdaily Scale Soil Moisture Estimates from CYGNSS and SMAP into a Land Surface Model

Environmental Research Letters

July 1, 2021

Soil moisture is important for understanding the global water cycle, but current satellite measurements are not continuous in time or space. This study combines data from NASA's Cyclone Global Navigation Satellite System (CYGNSS) and the Soil Moisture Active Passive (SMAP) to improve soil moisture estimates in a land surface model (LSM). The results show a 61.3% improvement in LSM soil moisture accuracy when combining the two satellite systems. However, using satellite data in areas with dense vegetation can lead to less accurate results. This research is the first to use global GNSS-based soil moisture observations in LSMs, which can help fill gaps in soil moisture measurements and improve our understanding of the water cycle.

* = mentored by Dr. Kim

Changes in the Speed of the Global Terrestrial Water Cycle Due To Human Interventions

Hyunglok Kim, Wade T. Crow, and Venkataraman Lakshmi
-
Under Preperation

A Global Scale Analysis of Subsurface Scattering Signals Impacting ASCAT Soil Moisture Retrievals

Wolfgang Wagner, Roland Lindorfer, Sebastian Hahn, Hyunglok Kim, Mariette Vreugdenhil, Alexander Gruber, Milan Fischer, and Miroslav Trnka
IEEE Transactions on Geoscience and Remote Sensing
Major Revision

How Much Precipitation Transformed Into Terrestrial Water Storage in Global River Basins?

Baoming Tian, Yulong Zhong, Hyunglok Kim, Xing Yuan, Xinyue Liu, Enda Zhu, Yunlong Wu, Lizhe Wang
Nature Communications
Under Review

Utility of Publicly Availability Stream Gauges Datasets and Deep Learning in Predicting Monthly Basin-scale Runoff in Ungauged Regions

M.H. Le, H. Kim*, S. Adam, H. X. Do, P.A. Beling, V. Lakshmi
Advances in Water Resources
Recently Accepted

Improving Weather Forecast Skill of the Korean Integrated Model (KIM) by Assimilating SMAP Soil Moisture Anomalies

Yonghwan Kwon, Sanghee Jun, Eunkyu Kim, Kyung-Hee Seol, Seokmin Hong, In-Hyuk Kwon, Hyunglok Kim
Quarterly Journal of the Royal Meteorological Society
Major Revision

Developing Independent CYGNSS Soil Moisture Retrieval Algorithm with Mitigated Vegetation Effects: Incorporating a Two-Step and Relative SNR Approaches

Ziyue Zhu, Hyunglok Kim*, Venkataraman Lakshmi
-
Under Preperation

A Novel Soil Moisture Validation Method Utilizing Brightness Temperature

Ziyue Zhu, Runze Zhang, Bin Fang, Hyunglok Kim, Venkataraman Lakshmi
-
Under Preperation

Evaluation of a Combined Drought Indicator against Crop Yield Estimations and Simulations over the Argentine Humid Pampas

Spennemann Pablo, Gustavo Naumann, Mercedes Peretti, Carmelo Cammalleri, Mercedes Salvia, Alessio Bocco, Maria Elena Fernández Long, Martin Maas, Hyunglok Kim, Manh-Hung Le, John D. Bolten, Andrea Toreti and Venkataraman Lakshmi
Agricultural and Forest Meteorology
Under Review

Observational Analysis of Long-term Streamflow Response to Flash Drought in the Mississippi River Basin

Sophia Bakar, Hyunglok Kim, Venkataraman Lakshmi
Weather and Climate Extremes
Under Review

From Theory to Hydrological Practice: Leveraging CYGNSS Data Over Seven Years for Advanced Soil Moisture Monitoring

Hoang Hai Nguyen, Hyunglok Kim*, Wade Crow, Wolfgang Wagner, Simon Yueh, Fangni Lei, Jean-Pierre Wigneron, Andreas Colliander, Frédéric Frappart
Remote Sensing of Environment
Under Review

Seasonal-scale intercomparison of SMAP and fused SMOS-SMAP soil moisture products

Jean-Pierre Wigneron et al.
-
Under Preperation

Systematic Modeling Errors Strongly Undermine The Value Of Land Data Assimilation Systems And Microwave Remote Sensing For Water Flux Estimation

W. T. Crow, H. Kim , S. Kumar
IEEE International Geoscience and Remote Sensing Symposium
July 21, 2023

Utilizing Bayesian Machine Learning for Analyzing Error Patterns in Global-Scale Soil Moisture Data

H. Kim , W. T. Crow, W. Wagner, X. Li, V. Lakshmi
Hydrology Machine Learning (HydroML) Symposium, Phase 2 at Berkeley Lab
May 1, 2023

Uncertainty Analysis Framework in the Water Balance Equation Using Bayesian Statistical Modeling Approach

H. Kim, W. Crow
American Geophysical Union, Fall Meeting
December 1, 2022

Retrieving Runoff in Ungauged Basins using Satellite Observations of Rainfall and Soil Moisture

H. Kim, W. Crow
American Geophysical Union, Fall Meeting
December 1, 2022

Changes in Extreme Precipitation Patterns in the Meuse River Basin as a Driver of the July 2021 Flooding

B. Goffin, P. Kansara, H. Kim, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2022

Reconstruction of the SMAP-based 12-hourly soil moisture product over the CONUS through water balance budgeting

R. Zhang, S. Kim, H. Kim, B. Fang, A. Sharma, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2022

Hydrological flash drought forecasting using meteorological flash drought indices and machine learning approaches – A case study in the Mississippi River Basin

S. Bakar, D. Quintero, M. Le, H. Kim, S. S. Adams, P. Beling, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2022

Global downscaling and assimilation of soil moisture

V. Lakshmi, B. Fang, H Kim
IAHS2022
March 1, 2022

Impact of Land Use Land Cover Changes on Carbon and Water Cycle Interactions: Using Data Driven Modeling and Satellite Products

M. Umair, S. Khan, H. Kim, M. Azmat, S. Atif
American Geophysical Union, Fall Meeting
December 1, 2021

Water Cycle in Different Time Scales: Analyzing the Impact of Human-driven Changes in Land Cover using Bayesian Inferences and Data Assimilation Methods

H. Kim, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2021

Contact me

If you have a keen interest in the intersection of climate change and its impact on hydrological research fields, I encourage you to consider pursuing a Master's, PhD, or postdoctoral position. By delving deeper into this critical area of study, you can play an essential role in addressing the world's most pressing environmental challenges and help safeguard our water resources, ecosystems, and communities. Your dedication and expertise can significantly contribute to the development of sustainable solutions and innovative approaches to hydrological research. Embark on this exciting journey and become part of the passionate community of scientists working towards a more resilient and environmentally responsible future.